Chapter 10: Rotational Motion Thursday March $5^{\text {th }}$

- Review of rotational variables
- Review of rotational kinematics equations
-Rotational kinetic energy
- Rotational inertia
- Rolling motion as rotation and translation
- Torque and Newton's $2^{\text {nd }}$ law (if time)
- Examples, demonstrations and iclicker
- Normal schedule after spring break, starting Monday $16^{\text {th }}$.
- Material covered today relevant to LONCAPA due that day.
- Normal lab schedule after spring break.
- I will return mid-term exams on Tuesday after spring break.

Reading: up to page 169 in Ch. 10

Review of rotational variables

Angular position: $\quad \theta=\frac{s}{r} \quad$ (in radians)
Angular displacement:
Average angular velocity:
Units: rad. s^{-1}, or s ${ }^{-1}$

$$
\begin{aligned}
& \Delta \theta=\theta_{2}-\theta_{1} \\
& \omega_{\text {avg }}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
\end{aligned}
$$

Instantaneous angular velocity:

$$
\begin{aligned}
\omega & =\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t} \\
\alpha_{\text {avg }} & =\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t}
\end{aligned}
$$

Instantaneous angular acceleration: $\quad \alpha=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t}$

Review of rotational kinematic equations

THE SAME OLD KINEMATIC EQUATIONS

Equation number

$$
\begin{aligned}
& 10.7 \\
& 10.8
\end{aligned}
$$

Missing
Equation quantity

$$
\omega=\omega_{0}+\alpha t
$$

$$
\theta-\theta_{0}
$$

$$
\theta-\theta_{0}=\omega_{0} t+\frac{1}{2} \alpha t^{2}
$$

$$
\omega
$$

10.9

$$
10.9
$$

$$
\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)
$$

10.6

$$
\begin{align*}
& \theta-\theta_{0}=\bar{\omega} t=\frac{1}{2}\left(\omega_{0}+\omega\right) t \\
& \theta-\theta_{0}=\omega t-\frac{1}{2} \alpha t^{2} \tag{0}
\end{align*}
$$

$$
\alpha
$$

Important: equations apply ONLY if angular acceleration is constant.

Review: transforming rotational/linear variables

Position: $\quad s=\theta r(\theta$ in rads $)$
Tangential velocity: $v_{t}=\frac{d s}{d t}=\frac{d \theta}{d t} r=\omega r$
Time period for rotation: $T=\frac{2 \pi r}{v}=\frac{2 \pi}{\omega}$
Tangential acceleration: $\quad a_{t}=\frac{d v_{t}}{d t}=\frac{d \omega}{d t} r=\alpha r$
Centripetal acceleration: $a_{r}=\frac{v^{2}}{r}=\omega^{2} r$

Kinetic energy of rotation

Consider a (rigid) system of rotating masses (same ω):

$$
\begin{aligned}
K & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+\frac{1}{2} m_{3} v_{3}^{2}+\cdots \cdots \cdot \\
& =\sum \frac{1}{2} m_{i} v_{i}^{2}
\end{aligned}
$$

where m_{i} is the mass of the i th particle and v_{i} is its speed.
Re-writing this:

$$
K=\sum \frac{1}{2} m_{i}\left(\omega r_{i}\right)^{2}=\frac{1}{2}\left(\sum m_{i} r_{i}^{2}\right) \omega^{2}
$$

The quantity in parentheses tells us how mass is distributed about the axis of rotation. We call this quantity the rotational inertia (or moment of inertia) I of the body with respect to the axis of rotation.

$$
I=\sum m_{i} r_{i}^{2} \quad K=\frac{1}{2} I \omega^{2}
$$

Calculating rotational inertia

For a rigid system of discrete objects: $\quad I=\sum m_{i} r_{i}^{2}$
Therefore, for a continuous rigid object: $I=\int r^{2} d m=\int \rho r^{2} d V$

- Finding the moments of inertia for various shapes becomes an exercise in volume integration.
- You will not have to do such calculations.
- However, you will need to know how to calculate the moment of inertia of rigid systems of point masses.
- You will be given the moments of inertia for various shapes.

Rotational Inertia for Various Objects

Table 10.2 Rotational Inertias

Disk or solid cylinder
about its axis
$I=\frac{1}{2} M R^{2}$

Hollow spherical shell about diameter

Flat plate about central axis
$I=\frac{1}{12} M a^{2}$

Parallel axis theorem

-If you know the moment of inertia of an object about an axis though its center-of-mass (cm), then it is trivial to calculate the moment of inertia of this object about any parallel axis:

$$
I_{\mathrm{PA}}=I_{\mathrm{cm}}+M d^{2}
$$

-Here, I_{cm} is the moment of inertia about an axis through the center-ofmass, and M is the total mass of the rigid object.

- It is essential that these axes are parallel; as you can see from table 10-2, the moments of inertia can be different for different axes.

Rolling motion as rotation and translation

$$
s=\theta R
$$

The wheel moves with speed $d s / d t$

$$
\Rightarrow v_{\mathrm{cm}}=\omega R
$$

Another way to visualize the motion:

Rolling motion as rotation and translation

$s=\theta R$

The wheel moves with speed $d s / d t$

$$
\Rightarrow v_{\mathrm{cm}}=\omega R
$$

Another way to visualize the motion:

Rolling motion as rotation and translation

Kinetic energy consists of rotational \& translational terms:

$$
\begin{gathered}
K=\frac{1}{2} I_{\mathrm{cm}} \omega^{2}+\frac{1}{2} M v_{\mathrm{cm}}^{2}=K_{r}+K_{t} \\
K=\frac{1}{2}\left\{f M R^{2}\right\} \frac{v_{\mathrm{cm}}^{2}}{R^{2}}+\frac{1}{2} M v_{\mathrm{cm}}^{2}=\frac{1}{2} M^{\prime} v_{\mathrm{cm}}^{2}
\end{gathered}
$$

Modified mass: $\quad M^{\prime}=(1+f) M \quad$ (look up f in Table 10.2)

Rolling Motion, Friction, \& Conservation of Energy

- Friction plays a crucial role in rolling motion (more on this later):
- without friction a ball would simply slide without rotating:
- Thus, friction is a necessary ingredient.
- However, if an object rolls without slipping, mechanical energy is NOT lost as a result of frictional forces, which do NO work.
- An object must slide/skid for the friction to do work.
-Thus, if a ball rolls down a slope, the potential energy is converted to translational and rotational kinetic energy.

