Chapter 10: Rotational Motion Thursday March 5th

- Review of rotational variables
- Review of rotational kinematics equations
- Rotational kinetic energy
- Rotational inertia
- Rolling motion as rotation and translation
- •Torque and Newton's 2nd law (if time)
- •Examples, demonstrations and *i*clicker
- Normal schedule after spring break, starting Monday 16th.
- Material covered today relevant to LONCAPA due that day.
- Normal lab schedule after spring break.
- I will return mid-term exams on Tuesday after spring break.

Reading: up to page 169 in Ch. 10

Review of rotational variables Angular position: $\theta = \frac{S}{r}$ (in radians) $\Delta \theta = \theta_2 - \theta_1$ Angular displacement: $\omega_{avg} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$ Average angular velocity: Units: rad.s⁻¹, or s⁻¹ $\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$ Instantaneous angular velocity: $\alpha_{avg} = \frac{\omega_2 - \omega_1}{t_2 - t_1} = \frac{\Delta \omega}{\Delta t}$ Average angular acceleration: Units: rad.s⁻², or s⁻² $\alpha = \text{Lim} \frac{\Delta \omega}{\Delta \omega} = \frac{d\omega}{\Delta \omega}$ Instantaneous angular acceleration: $\Delta t \rightarrow 0 \quad \Lambda t$

Review of rotational kinematic equations

THE SAME OLD KINEMATIC EQUATIONS

Equation		Missing
number	Equation	quantity
10.7	$\omega = \omega_0 + \alpha t$	$\theta - \theta_0$
10.8	$\theta - \theta_0 = \omega_0 t + \frac{1}{2}\alpha t^2$	ω
10.9	$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$	t
10.6	$\theta - \theta_0 = \overline{\omega}t = \frac{1}{2}(\omega_0 + \omega)t$	α
	$\theta - \theta_0 = \omega t - \frac{1}{2} \alpha t^2$	$\boldsymbol{\omega}_{_0}$

Important: equations apply ONLY if angular acceleration is constant.

Review: transforming rotational/linear variables

Position:
$$s = \theta r \left(\theta \text{ in rads} \right)$$

Tangential velocity: $v_t = \frac{ds}{dt} = \frac{d\theta}{dt}r = \omega r$
Time period for rotation: $T = \frac{2\pi r}{v} = \frac{2\pi}{\omega}$

θ

S

Tangential acceleration:

Centripetal acceleration:

$$a_{t} = \frac{dv_{t}}{dt} = \frac{d\omega}{dt}r = \alpha r$$

$$a_{r} = \frac{v^{2}}{r} = \omega^{2}r$$

$$v \text{ depends on } r$$

1 1

Kinetic energy of rotation

Consider a (rigid) system of rotating masses (same ω):

where m_i is the mass of the *i*th particle and v_i is its speed. Re-writing this:

$$K = \sum \frac{1}{2} m_i \left(\omega r_i \right)^2 = \frac{1}{2} \left(\sum m_i r_i^2 \right) \omega^2$$

The quantity in parentheses tells us how mass is distributed about the axis of rotation. We call this quantity the rotational inertia (or moment of inertia) *I* of the body with respect to the axis of rotation.

$$I = \sum m_i r_i^2 \qquad \qquad K = \frac{1}{2} I \omega^2$$

Calculating rotational inertia

For a rigid system of discrete objects: $I = \sum m_i r_i^2$

Therefore, for a continuous rigid object: $I = \int r^2 dm = \int \rho r^2 dV$

- Finding the moments of inertia for various shapes becomes an exercise in volume integration.
- You will not have to do such calculations.
- However, you will need to know how to calculate the moment of inertia of rigid systems of point masses.
- You will be given the moments of inertia for various shapes.

Rotational Inertia for Various Objects

Table 10.2 Rotational Inertias

Parallel axis theorem

•If you know the moment of inertia of an object about an axis though its center-of-mass (cm), then it is trivial to calculate the moment of inertia of this object about any parallel axis:

$$I_{\rm PA} = I_{\rm cm} + Md^2$$

•Here, $I_{\rm cm}$ is the moment of inertia about an axis through the center-ofmass, and M is the total mass of the rigid object.

•It is essential that these axes are parallel; as you can see from table 10-2, the moments of inertia can be different for different axes.

Rolling motion as rotation and translation $S = \theta R$ The wheel moves with speed defined

Another way to visualize the motion:

Rolling motion as rotation and translation

 $s = \theta R$

The wheel moves with speed ds/dt

$$\Rightarrow v_{cm} = \omega R$$

Another way to visualize the motion:

Kinetic energy consists of rotational & translational terms:

$$K = \frac{1}{2} I_{\rm cm} \omega^2 + \frac{1}{2} M v_{\rm cm}^2 = K_r + K_t$$
$$K = \frac{1}{2} \left\{ fMR^2 \right\} \frac{v_{\rm cm}^2}{R^2} + \frac{1}{2} M v_{\rm cm}^2 = \frac{1}{2} M' v_{\rm cm}^2$$

Modified mass: M' = (1+f)M (look up f in Table 10.2)

Rolling Motion, Friction, & Conservation of Energy

- Friction plays a crucial role in rolling motion (more on this later):
 without friction a ball would simply slide without rotating;
 Thus, friction is a necessary ingredient.
- However, if an object rolls without slipping, mechanical energy is <u>NOT</u> lost as a result of frictional forces, which do <u>NO</u> work.
 An object must slide/skid for the friction to do work.
- •Thus, if a ball rolls down a slope, the potential energy is converted to translational and rotational kinetic energy.

